

What Will I Talk About?

- Introduction 15 min.
 - Who Am I?
 - What's a COZY MKIV?
 - Why a COZY MKIV
 - COZY Plans
 - COZY Cost
 - COZY Support
 - COZY Parts Vendors
 - How Many COZY's Under Construction / Flying?

- Further Topics 30 min:
 - COZY Aircraft Structures
 - Flight Testing Methods
 - COZY Engine choices
 - Fuel Compatibility
 - Strake Mod. Aerodynamics
 - Common Modifications
 - Performance Mods
 - COZY Safety Record
 - Safety Mods/Issues –
 Aging of Fleet
- Futures / State of Design
- Questions and Answers

Who The Heck Am I?

- Biography / Resume'
 - http://www.mdzeitlin.com/Marc/bio.html
- Built Quickie Q2
- Built COZY MKIV #386, N83MZ ~640 flying hours
- Started / Administer Unofficial COZY Builders Web Page and COZY Mailing List (~610 members)
- Work for Scaled Composites as Mechanical Engineer/Manager – Currently Lead Project Engineer for SS2 Rocket Motor Development

What's a COZY MKIV?

- History
 - Designed by Nat Puffer
 - Derivative of Burt Rutan's Long-EZ
 - Evolved from 3-place to current 4-place in early 1990's

Type

- Canard big wing in back, small wing in front
- 4 place, or 2+2, or 2 + LOTS of baggage
- Efficient, fast, long distance cruiser

Aerodynamics – Nat's 2005 Oshkosh Forum

http://www.cozybuilders.org/Oshkosh_Presentations/Nats_OSH2005_Presentation.pdf

Why a COZY MKIV?

- Want to **BUILD**
- Use-Model comparison
- Economics
- Carrying Capacity
- Safety Features
- Composites

COZY Plans Availability

Cozyaircraft Corp.
 now owned by ACS

Plans available through ACS http://www.aircraftspruce.com

Vendor Display Building at OSH

COZY MKIV Cost

- Low End \$35K to \$50K
 - High Time Engine (maybe Auto Conversion)
 - Good Scrounging
 - Minimum Instruments VFR Only
- Mid-Range \$50K to \$75K
 - Some Prefab (not much)
 - Rebuilt Engine
 - High end VFR Low End IFR Panel
- High End \$75K to \$120K
 - Lots of Prefab components / paid help
 - New Lycoming
 - Complete Latest IFR Stack Panel
- Plans NOT A KIT!!!

COZY Support Methods

No Official Support from ACS, But:

- COZY Newsletter archives
 - http://www.cozybuilders.org/newsletters/
- COZY Mailing List
 - http://www.cozybuilders.org/mail_list/
- Unofficial COZY Builders Web Page
 - http://www.cozybuilders.org/
- Builder's Web Pages (links from UCBWP)
- Canard Aviator's Mailing List
 - http://groups.yahoo.com/group/canard-aviators/
- CSA Newsletter
 - http://www.cozybuilders.org/ref_info/other_news.html
- Freeflight Composites (Burrall Sanders)
 - http://www.freeflightcomposites.com/services.htm

If you're a current or prospective COZY builder or flyer and believe that official support from a sanctioned ACS/Nat Puffer avenue would help convince you to build this plane:

Let Jim Irwin at ACS know!

COZY Parts Availability

- ACS, Wicks, etc.
- Two main vendors provide metal parts:
 - CG Products
 - http://www.cozygirrrl.com/aircraftparts.htm
 - EZ Noselift
 - http://www.eznoselift.com/
- Other part vendors for miscellaneous items see:
 - http://www.cozybuilders.org/newsletters/suppliers.html
 - http://www.cozybuilders.org/newsletters/na_suppliers.html

How Many COZY's?

- ~ 2000 Rutan Derivative Canard Aircraft flying (VariViggen, V.E., L.E., Defiant, Berkut, E-Racer, SQ2000, Velocity, COZY III, COZY MKIV)
- ~ 220 300 flying COZY's all over the globe
- ~1600 COZY MKIV plans sold
- ~ 600-800 actually under construction
- 5-10 new COZY MKIV first flights per year

COZY Aircraft Structures

- Lack of structural failures in type is NOT a license to make structural mods, HOPING that the (UNKNOWN) safety factor will save your butt!
 - Only known testing to failure are on L.E./V.E. canard one failed at 14G, another at 6 7G's shows variability in MFG and structural capabilities
 - At least one L.E. wing test done no details known
 - NO COZY structural testing has ever been done!!! Do you know the safety margins? I don't!
 - Modifications to composite structures are far more complex and difficult to analyze than with metal structures
- Wing/Canard:

Spars: Carry bending loads in wings

Shear Webs: Carry shear loads in wings – transfer loads from top to bottom

Skins: Carry twisting loads in wings

• Fuselage:

Bulkheads: Stiffen fuselage in bending (sideways) and twisting

Sides: Stiffen fuselage in bending and twisting

Longerons: Help stiffen – mostly act as mounting "hardpoints"

- Reinforcements: On LG Bulkheads/Firewall/Seatbelt Attach/Canard Attach

- Thicken, hardpoints, transfer loads between major

structures

Flight Testing Methods

Purpose of Phase I Flight Testing:

- Determine ALL performance characteristics of airplane at ALL corners of the performance envelope
 - Calibrate Pitot Static System CAS vs. IAS (MUST understand difference between CAS/IAS/TAS/GS)
 - · Rotation speeds
 - Climb performance
 - Cruise performance
 - Descent performance
 - gear retracted, extended
 - LB retracted, extended
 - Landing speeds
 - Stalls
 - accelerated stall (more than 1G performed in 15, 30 45, 60 degree banked turns)
 - Deep stall susceptibility
 - · Pitch stability
 - Lateral Stability (spiral, Dutch Roll, Roll/yaw coupling)
 - Flutter (stick raps)

• Performance Envelope Includes:

- Forward, Mid, Aft CG
- MGW, Middle Weights, Light Weights
- Full, Mid, Low Fuel
- Speeds from Vs to Vne+10%
- Altitudes from GL to Service Ceiling (or max desired altitude)
- ANY AND ALL maneuvers that may be attempted in Phase II

• Flight Test Guidelines:

- See AC90-89A EXCELLENT guide
- Use a Test Pilot if not completely capable and current
- Should take 30-35 hours AT LEAST to perform all required tests – if you're done after 15 hours, you haven't done enough
- Flying around in circles for 40 hours at one CG is NOT flight testing, no matter how many people SEEM to get away with it

CG Determination:

- Need ACCURATE empty CG implies accurate weighing
- Bathroom scales are **NOT** accurate enough
- Can weight with ballast / passengers / pilot for more accurate station information
- Use accurate spreadsheet / calculations to determine flight CG
- Use weights (lead, steel, sandbag, water container) at appropriate station to set CG for testing

• Procedures:

- Start testing in **CENTER** of CG range
- Slowly add weight and move forward and aft within CG range
- Start with mild maneuvers
- Start with short flights
- Runway flights OK if have LONG runway
- Gear stays down on first few flights

COZY Engine Choices

FLYING:

- Lycoming O-360 / O-320 many variants
 - Hundreds flying successfully
- Lycoming O-540 (only marginally "alternative")
 - Three flying successfully (Jannie Versfeld / Chris Esseltstyn / Scott Carter)
- Jabiru 5100
 - One flying successfully
- Subaru -
 - Two flying (different variants) semi-successfully
- Twin Suzuki -
 - One flying successfully in Venezuela
- Rotary (Mazda 13B variants) -
 - Two "flying" very little flight time, numerous engine related incidents (John Slade / Steve Brooks)
 - Two others removed for Lycomings after minimal flight time (Joe Hull / Bulent Aliev)
- V8 variants -
 - One flying in South Africa (few hours due to accident – not engine related)
 - One removed long ago and replaced with Lycoming
- Turbo-prop (Allison) -
 - One flew crashed during Phase I in 2008 (cause unknown)
- Jet Turbine -
 - One flying successfully (Greg Richter)

IN DEVELOPMENT:

- One Continental IO-360
- Numerous Mazda 13B and 20B variants
- Different Subaru (H3.0 turbo)

POSSIBILITIES:

- New Lycoming Variants (not major stretch)
- Deltahawk Diesel (expensive & not available)
- Mistral Rotary (VERY EXPENSIVE)

AUTO CONVERSION ISSUES:

- Difficult development every one different than all others
- Hard to compete with simplicity of air cooled Lycoming, for all its faults
- Potential? YES. Actuality? NOT YET.
 Needs a LOT more development work

Fuel Compatibility

Aircraft Gasolines:

- 100 LL
 - Thousands of examples flying
- 100LL Successor probably 94 octane no-lead
 - In development same as 100LL but no lead
 - 80% of aircraft engines can use – only very high compression engines cannot

Mogas:

- Alcohol Free
- Alcohol
- All have unknown additives

Diesel:

- One EZ flying
- Bio-Diesel
- Jet-A

Swift Fuel, etc. (synthetic)

• In development – not available

Epoxy Tank Sealants:

- EZPoxy with slow hardener (EZ87) is best
- Other EZPoxy's next
- MGS, etc. seem to work with 100LL no degradation seen

Other Tank Sealants:

- Pro-Seal polysulfide best (890 Type A or equivalent)
 - Used in industry
 - Meets MIL Spec requirements
- Jeffco (epoxy not polysulfide)
 - One Velocity had major peeling problems unknown cause

Strake & Strake Modification Aerodynamics

• Basic Strake Aerodynamics:

- Common misconception that strakes do not produce lift NOT just a fuel/storage tank
- Flat top/bottom or not, strakes **DO** produce lift
- **EVERYTHING** produces lift if at AOA to relative airstream hold your hand out a car window, or watch a mattress on top of a car
- Not most efficient lifting surface, but it **IS** a wing
- Different shape/incidence angle than rest of wings, so will not follow wing's lift curve slope has it's own
 - strakes will produce substantial lift at low airspeeds/high AOA's
 - little at high speeds/low AOA's (due to lack of camber / different incidence angle)

What is the Modification?

- Kick out straight LE of COZY strake
- Shape like Long-EZ strake

• Why Do It?

- Elbow/storage room for front seaters
- Not enough work in the standard build

• What's the Effect (Aerodynamically)?

- Small (area-wise)
- Close to Fuselage (not very efficient lifting area anyway)
- Very swept low lift curve slope
- Basically, Nothing Measurable

Common Modifications

• Major:

Remove Lower Winglets

Raised Canopy (1" – 2")

- Widened (Aerocanard "style") Canopy
- Forward Opening Canopy, a-la Cosy Classic
- Long-Eze type ("Cozygirrrl") strake L.E.
- Original Length Canard

Retractable Main Gear

(mandatory to have on COZY!)

(approved)

(mandatory to cut 6" from original – possible safety issue with rear CG, & rotation, but numerous flying)

(not recommended, but there

are a few flying)

• Minor:

Electric Nose Gear

Electric Landing Brake

- Move Landing Lights
- Hanging Rudder Pedals (Velocity Style)
- Eliminate Fuselage Access Door
- Etc., etc., etc.

(approved)

(approved)

Performance Modifications

- Wheel Pants (size / design)
- Gear Leg Fairings
- Retractable Landing Gear
- Cowling/Cooling (airflow / boat-tail / exhaust)
- Nose Wheel Door
- Winglet Intersection Fairings
- Spinner

- 8 to 12 kts
- 3 to 5 kts
- 0 to 20 kts
- 0 to 15 kts **potential**
- ?? (small)
- 1 to 4 kts (est.)
- 0 to 1 kts
- Appropriate VG's (per Mark Beduhn's installation):
 - Decrease landing speed

- 7 to 10 kts

Decrease top end speed

- 1 to 3 kts

COZY Safety Record

- NO accidents caused by structural/aerodynamic failure of properly built and flown
 COZY aircraft in fact, of ANY RUTAN/DERIVATIVE CANARD
- Since 1989, 23 total accidents 16 reported accidents in USA, 1 in Canada, 1 in Mexico, 3 in France, 2 in South Africa

• 8 Fatal Accidents		• 1	5 Non-Fatal Accidents			
 Phase I COZY MKIV - poor approach and hard landing 	9/21/1994 -	N151JE	– 4 engine failure / fuel system failure	5/7/1996 - 2/11/1997 - 5/30/2003 - 11/5/2008 -	N86LM N34PC N94WD N637PS	
COZY MKIV (turbine) - 1 Unknown cause – crash – Phase II		N14GG	- 3 poor approach / landing	1/22/2003 - 1/26/2003 -	N96PJ N320FR	
COZY MKIV - low approach snagging wires COZY III - severe wind shear - Mexico	1/1/1995 - 1/18/2002 -	N5037 N41CZ	- 2 fuel exhaustion	11/15/2008 - 12/2/2003 - 2/25/1989 -	N149CZ N238CZ N611CZ	
AeroCanard - takeoff problem / possible prop fouli	ng from open o	canopy N199JW	- 1 GU canard contamination / CG related	6/23/1995 -	N84CZ	
COZY MKIV – Pilot error at low altitude	7/24/2008 -	N500K	- 1 CG related deep stall	10/4/1996 -	N96PJ	
COZY III – suspected prop fouling / open canopy in France	2001 -	builder: Soria	 1 rudder flutter (improper build) in France (2004) 1 overtightened bolts and/or wheel pant tangled in wheel in South Africa 			
COZY Classic <improper build="" cg="" problems?=""> i</improper>		F-PSCF	1 poor takeoff / no rotation in South Afric1 Winglet problem in Canada?	ca		

Accident **RATE** – **Assume** 110 flying (avg.), 50 hrs/yr (avg.), 18 years – 99K hrs total

- **8.0/100K** hrs **fatal** (6.0/100**K** w/o Phase I) GA is **1.26/100K** hrs
- **22/100K** hrs total GA is **6.32/100K** hrs

Safety Modifications/Issues

• Flying/Landing Techniques / Judgment:

- Single largest factor almost ½ of all COZY accidents
- Under our control must actively manage and learn
- Giving presentation on "Judgment" at COZY dinner tonight

Actual Issues:

- Nose Strut safety bolt broken struts
- Safety wire/hose clamp exhausts broken exhaust through prop
- Composite props (Catto/Hertzler) MUCH more resistant to FOD
- Forward Hinge Canopy have lost canards due to canopy opening upon takeoff –
 FLY THE PLANE (does prevent bailing out, but who flies with a parachute?)
- Brake sizing / system components have been fires, lost brake effectivity
- Nose gear rigging (shimmy reduction)

• Potential Issues:

- Roll bar have been rollovers, but no injuries
- Control System play torque tube mounts / bolted joints
- Other?

Futures / State of Design

• Future of COZY:

- Very active community: plans sales still ~30-50/year
- New completions all the time
- Slow evolution of derivatives beginning
 - Chris Esselstyn's stretched retract
 - Other O-540 variants
 - Wider fuselages, etc.

• State of Design Questions:

- Extremely well developed design/plans however...
- Official Builder Support?
 - Nothing now
 - If you believe so, tell ACS a paid position is needed and should be supported from plans/parts sales
- Official Designer (qualifications)?
- Who Approves Vendors/Parts?
- Who Approves Modifications/Design Changes/Fixes?
- How is Design Advancing?
 - Fits and starts
 - Randomly
 - Little good testing of mods, per Nat's example
 - Lots of non-engineered mods occurring worrisome to me

Questions? (& Answers)

• My Email: <u>marc_zeitlin@alum.mit.edu</u>

• Website: http://www.cozybuilders.org/