Designing Fabricating and Testing a P-51 Scoop

Keith Spreuer

5/9/2008

Introduction

Radiator and Oil Coolers Benefit from Pressure Recovery Scoops

Presented By Keith Spreuer

- Cozy Builder/Flyer since 1984
- ♦ 42 year Aerospace Engineering
- EAA Tech Councilor Chapter 96

Topics of Discussion

Why Switch to a P-51 Scoop

- How to Design the Scoop
- Conversion of a Cozy NACA
- Fabrication of Scoop
- Test Data and Measurement Tech.

Why Use a P-51 Scoop

- Radiator Type Heat Exchangers Need as much Delta P as they can get
- NACA Scoops are best at Low Delta P High Flow
 - Good for relatively unrestricted flow path of Air cooled engines
- P-51 Scoop has Best Pressure Recovery
 - Roughly 80% of Dynamic Pressure
- Oil Coolers and Auto Conversion
 Radiators Benefit from a P-51 Scoop

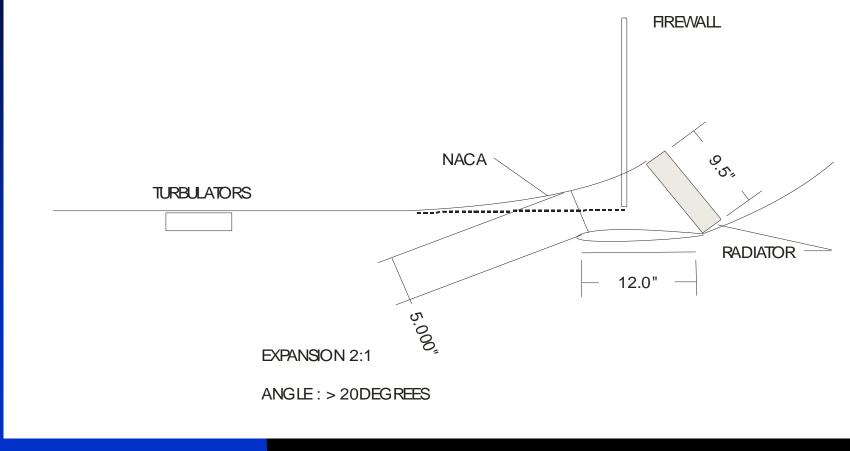
NACA Oil Flow

5/9/2008

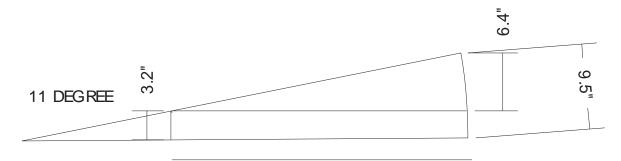
Before NACA Scoop

5/9/2008

Before Close Up



5/9/2008


Designing a P-51 Scoop

No Included Angles >11 Degrees
3:1 Expansion

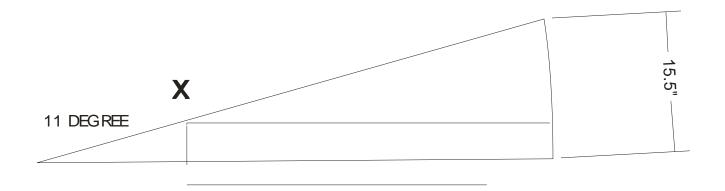
NACA SIMI SUBMERGED SCOOP

P-51 DESIGN SIDE VIEW

L

3:1 EXPANSION

RADIATOR AREA 147.3 SQ IN.


1/3 AREA = 49.1 SQ IN

FICK OPENING HEIGHT, 3.2 INCH

 $L=(9.5-3.2)^{TA}N(11)=32$

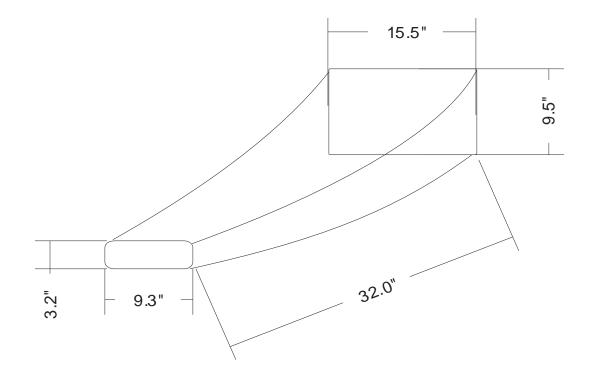
5/9/2008

P-51 DESIGN TOP VIEW

L

3:1 EXPANSION

RADIATOR AREA 147.3 SQ IN.


1/3 AREA = 49.1 SQ IN

USING L FROM PREVIOUS= 32 INC HES

X= 15.5-32 TAN (11)= 9.3 INC HES

5/9/2008

P-51 ISOMETRIC

CONVERSION OF NACA

- No Alteration of NACA
- Cover Fits in Front of New Scoop Over Old NACA
- Started By Covering Entire Area with Packing Tape
- Used Blocks of PVC Foam to Fill NACA and Oversize of P-51
 - Layed Out Inlet 32" Ahead of Radiator and Off Skin 1.5" for BLD

Modified Cowl

 Lowered Lip of Cowl to Same WL as Inlet Lip

- Cut from Lip Sides to Radiator Bottom on Lt and Rt
- Spaced Lip down, Filled Gap with Foam
- Carved Inlet to ½" Outside Desired size to Produce a Lip

Inlet Lip

Quarter View

Scoop Side View

Fabricating the OML

- Removed Foam Between Inlet and Belly for BLD Back a few Inches
- Carved OML to Mate with Cowl Lip Location With Streamlined Shape
- In Front of Inlet Carved Foam for a Flat Cover Over NACA Nose
- Microed and Glassed One Bid over OML, Second Bid On Flanges and Cover, Peel Ply

NACA Nose Cover

Fabricating the IML

 After Cure, Cut Both Sides From Lip to Cowl Lip Thru Glass and Foam

Separated Lower Half Of P-51
 Scoop Forward of Cowl

IML is Contoured With Smooth Lines to Mate with Cowl IML and Rear Edge of Old NACA At Top

IML Photo

Cowl Section

5/9/2008

Shaping IML

- Shape IML of Cowl Portion
- Takes Several Iterations of Cowl on and Off, and P-51 Halves Together and Not to Match Shape of IML
- Once Roughly Matched Assemble Cowl and Scoop on Airframe
- Bond Lower Scoop to Upper with Pour Foam

Joining Halves Together

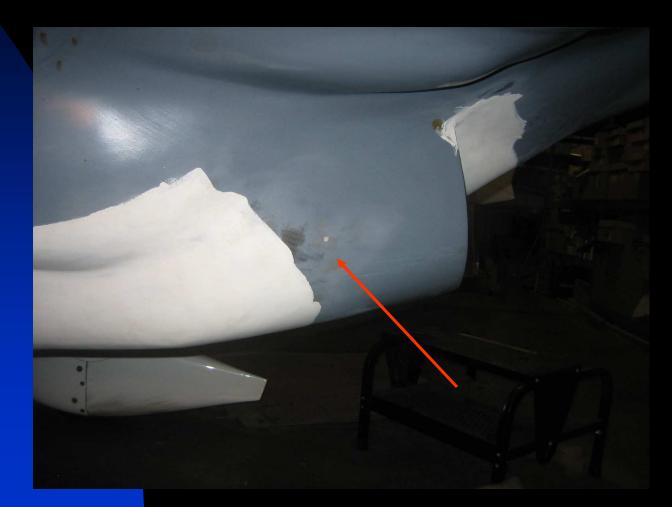
- Apply One BID Over Lip Area a Couple Inches on to OML and in to IML
- Cover Lip and OML with Another BID and Peel Ply
- After Cure Separate from Fuselage and Cowl

Glassing IML and Top

- The IML Will Need Final Shaping Due to Shifting
- Micro and Glass IML with 2 BID
- After Cure the Top Can be shaped to Save Weight and Make a Good Shape
 - Leave a Flange to Mate With Belly
 - Glass Top With One BID

Attaching to Airframe

- Reinstall Scoop and Cowl with 5 Min Glue to Hold in Place
 - Drill 3/16th Attach Holes in Scoop Portion Into Belly of Fuselage
 - Remove Scoop
- Open Holes in Belly to ¼" and Use Counter Bore to Make 5/8th Holes
- Make 5/8" Aluminum Inserts with Flats on Sides and a Circular Groove with Rough Surface
 - Bond Flush With Belly with Flox

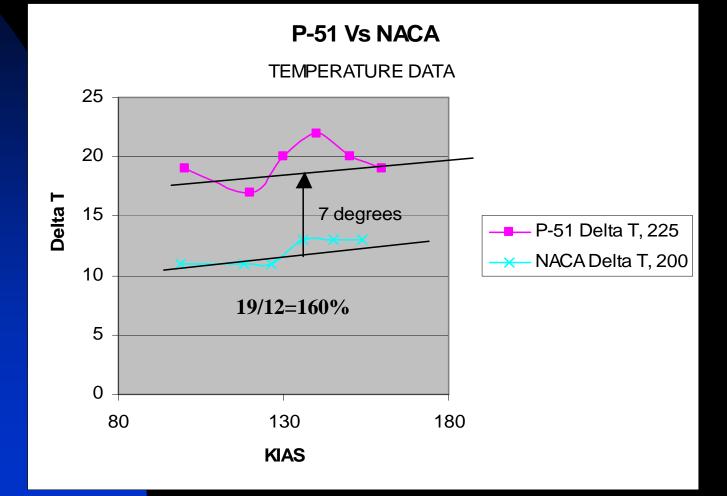

Attaching to Airframe

- After Inserts are Cured Remove Packing Tape
- Sand Insert Area for Glass to Glass Bond Over 3" Diameter
 - Cover Insert with One BID
- Put Scoop Back in Place and Drill and Tap Inserts for #10 Screws

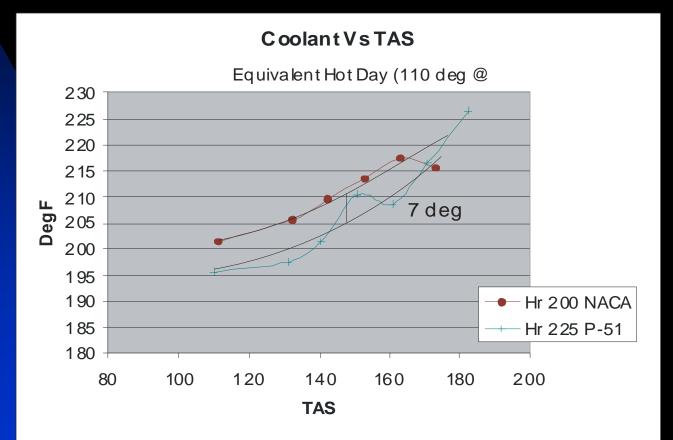

Measuring Delta P

- For any Given Heat Exchanger Flow Limits Capacity
- Flow is Proportional to Delta P
 - Maximize Up Stream Minimize Downstream
- A/S Indicator is one way
- Digitron Delta P excellent
- Aquarium Stone Good for Omni Directional Pressure

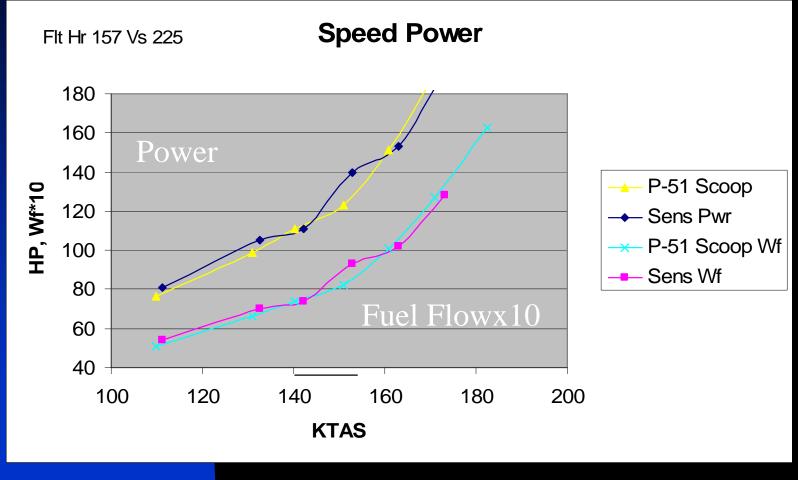
Cowl Static Location



Pressure Increase


5/9/2008

Delta T Improvement



5/9/2008

Temp Vs Speed

Power Vs Speed

5/9/2008

SUMMARY

- Not Difficult to Convert a NACA to P-51
- P-51 Improved Flow, Delta T
- Lowered Coolant Temp 7 deg
- No Speed Reduction
- Weight about 10 lbs